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Abstract

In this paper we describe how the existing theories to describe retention and peak width in isocratic and gradient-elution
liquid chromatography can be expanded to describe the retention behaviour of natural and synthetic repetitive polymers,
which feature distributions of molecules with different masses (and often different structures) rather than unambiguous
molecular formulas. For polydisperse samples, it is vital that the model accommodates (isocratic) elution of sample
components before the onset of a gradient, elution during the gradient, and elution after the completion of the gradient. The
expanded models can readily be implemented in standard spreadsheet software, such as Excel. We have created such
spreadsheets based on the conventional model for retention in reversed-phase liquid chromatography (RPLC) and on two
different models for retention in normal-phase liquid chromatography. The implementation allows an easy visualization of
the theoretical concept. Up to three different polymeric series can be entered, with a total of up to 100 peaks being computed
and displayed in isocratic or gradient-elution chromatograms. Also visualized are ‘‘retention models’’ (diagrams of isocratic
retention vs. composition) and ‘‘calibration curves’’ (retention or elution composition vs. molecular mass or degree of
polymerization). The coefficients in the isocratic retention model may be correlated, as has often been observed in RPLC. It
is shown that under certain conditions such a correlation corresponds to the existence of so-called critical (isocratic)
conditions, at which all the members of a given polymeric series (same composition and end groups, different number of
repeat units) show co-elution.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction raphy of small molecules is quite well established.
Major contributions to the development of this

1.1. Theory of gradient elution
´ ˇtheory have been made by Jandera and Churacek [1]

The theory of gradient-elution liquid chromatog- and Snyder [2]. In Snyder’s linear-solvent strength
(LSS) theory the solvent composition is varied in
such a way that the retention factor changes ex-
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99gradient (initial solvent),t is the residence time (or reach the top of the column.t is the net retentionm R

9hold-up time) of the mobile phase in the column and time (t ) corrected for the dwell time:R

b is the gradient-slope parameter. In the common
99 9t 5 t 2 t 5 t 2 t 2 t (5)R R D R m Dcase of reversed-phase liquid chromatography

(RPLC), the retention factor varies approximately
For the case of linear gradients in RPLC (and forlinearly with the volume fraction (w) of strong

many other cases [1]) the integral of Eq. (4) can besolvent in the mobile phase (usually the volume
solved analytically and the result can be rearrangedfraction of organic modifier in water) [2,3]:
to yield an expression for the retention time under
gradient conditions:ln k 5 ln k 2 Sw (2)0

t1 Dwhere k is the retention factor in the pure weak ] ]]99t 5 ln 11 SBk(A) t 2 (6)0 H F GJR mSB k(A)solvent (usually water) andS is the slope. In the case
of a linear gradient, the composition can be de- In many casesk(A) is very large, so thatt ..t /m D
scribed by: k(A) and SBk(A)t ..1. This yields a very simplem

and convenient expression for the retention time of
w 5 A1Bt 5 f(t) (3) solutes eluting well into the gradient:

whereA is the initial mobile-phase composition and 1
]99t ¯ ln SBk(A)t (7)f gR mB the slope (in volume fraction units per minute; SB

1003B is the slope in volume-% per minute). Thus,
One important consequence of Eq. (7) is that itin RPLC a linear gradient corresponds to LSS

makes it straightforward to estimate the modelconditions. Note that this is not generally true in
parametersS andk from the results of two gradient0other forms of liquid chromatography, where Eq. (2)
runs (I and II) with different slopes (B), but identicalis normally not valid. The concepts presented in this
starting compositions (i.e., identical values ofk (A)ipaper are valid if polymer retention is described
for a given analytei). The value forS can easily beicorrectly by an accurate model, irrespective of LSS
derived from:conditions being met.

If we know how retention varies with composition ln B /Bs dII I
]]]]]S 5 (8)(Eq. (2)) and how composition varies with time (Eq. i 99 99B t 2B tII R I Ri,II i,I(3)), we have, in principle, all the information

required to describe the retention behaviour of and k then follows from:0,i
analytes under gradient conditions. In order to estab-

99exp t S B 1 S Alish the retention time under gradient conditions we R i I is di,I
]]]]]]k 5 (9)0,ineed to solve the basic integral for gradient elution S B ti I m

[4]:
Eqs. (8) and (9) form the basis of many successful

t9R simulation and optimization programs for RPLC.
21 td f wf gs d D A final important parameter that follows from]]] ]]E 5 t 2 (4)mk w k(A)s d simple gradient-elution theory is an estimate for the

0
peak-width under gradient conditions. For a chro-

21where f (w) is the inverse gradient function. For a matographic peak eluting under gradient conditions
21linear gradient we find from Eq. (3) thatf (w)5 we may write:

(w2A) /B. k(w) is the relationship between the tm
]s 5 (11 k ) ? G (10)retention factor and the composition andk(A) is the ]e ŒNparticular value of k at the initial mobile-phase

composition (w5A). t is the gradient delay time, or wherek is the retention factor at the moment ofD e

dwell time. This is the time it takes for any pro- elution andG (#1) is a band-compression factor,
grammed change in mobile-phase composition to caused by the fact that under gradient conditions the
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leading edge of the peak travels somewhat slower normal-phase systems using bare silica or polar-
(weaker solvent) than the tailing edge [2]. Under bonded materials as the stationary phase.
isocratic conditionsG51 andk corresponds to the (3) Repetitive polymers, including almost alle

conventional retention factor (constant throughout synthetic polymers, as well as some natural ones, are
the elution), leaving the conventional expressions5 not well-defined molecules. Instead, they are char-
(11k)t /œN5t /œN. Snyder [2] finds for peaks acterized by distributions of molecular mass, func-m R

eluting well into the gradient the following approxi- tional groups or end groups, chemical composition,
mate expression fork : etc. Samples of synthetic polymers are alwayse

‘‘polydisperse’’ to some extent.
1 (4) Different polymeric series and individual]]k ¯ (11)e SBt series members are often spread across the entirem

chromatogram, with distinct possibilities of peaks
eluting before the onset or after completion of the
gradient. As a result, simplified gradient-elution

1.2. Gradient-elution chromatography of polymers theory (e.g., Eq. (7) and Eq. (11)) is not applicable.
We have overcome the second, third and fourth of

In our work we are trying to understand, describe these limitations in the work reported here. We have
and ultimately predict the chromatographic behav- developed models and accompanying software,
iour of large polymers, with molecular masses which now allow us to rigorously test the first item
ranging from thousands to millions. Other authors, on the list, i.e., the retention mechanism(s) pertaining
including Jandera et al. [5], have studied the be- to the liquid chromatography of synthetic polymers.
haviour of the smallest members of polymeric series Regarding the first point, we follow the Snyder
(oligomers, with molecular masses up to, say, 1000 philosophy in this paper. A solution–precipitation (or
Da) in great detail. There are a number of reasons on–off) mechanism does not allow a discussion of
why the theory of gradient elution cannot simply be the effect of polydispersity on the behaviour of
applied to describe the LC behaviour of synthetic polymers in liquid chromatography. One of the most
polymers. intriguing aims of our study into polymer LC is to

(1) The mechanism of polymer retention in gra- clarify the phenomenon of critical conditions, at
dient-elution LC is still a matter of dispute [6,7]. which retention is independent of analyte molecular

¨Glockner et al. [8,9] have argued in favour of a mass – and the effect of sample polydispersity (Mw/
precipitation-elution mechanism, in which polymers Mn) is negligible. The treatment below encompasses
are either fully retained or rapidly eluted, depending the behaviour of small and large molecules, mono-
on the mobile-phase composition. Similar mecha- disperse and polydisperse samples, and the occur-
nisms have been put forward by Regnier [10] and by rence of critical conditions.
Martire and co-workers [11,12]. Snyder and Dolan
[6] and others [13–15] have suggested that polymers 1.3. Retention models for normal-phase liquid
behave similar in kind to smaller analyte molecules, chromatography (NPLC)
but different in degree, i.e., Eq. (2) applies with very
high values ofS. At the start of this paper we have introduced Eq.

(2) The retention of polymers under isocratic (2), which is equivalent to assuming a typical RPLC-
conditions may not follow Eq. (2) [6,15]. Even if the type behaviour. It is far from evident that this
retention mechanism of large (polymeric) molecules assumption is reasonable for the RPLC of polymers.
would be similar to that of small molecules, various For very large molecules that show very high
types of stationary phases and mobile phases are apparentS values, the extent to which Eq. (2) is
applied [7,16]. This includes typical reversed-phase followed may be of little practical relevance, as the
systems with aqueous–organic mobile phases, non- predicted retention under gradient conditions will not
aqueous reversed-phase systems with mixtures of be greatly affected by slight deviations from an
organic solvents as the mobile phase, and typical (almost) infinitely steep line. However, we clearly
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wish to describe all kinds of polymers (low molecu- meric series) are not highly retained at the initial
lar-mass oligomers as well as large macromolecules) conditions. Likewise, a fraction of the sample will
under conditions of low or high retention. This often elute late. Problems with early eluting peaks
requires other models to be studied, notably those are also likely to occur in the separation of physical
suitable for describing retention in NPLC. mixtures (‘‘blends’’) of polymers into the individual

We implemented two models described by Jandera homo- or copolymers. Gradient-elution LC is an
et al. [17], as shown in Table 1. The first model excellent tool for this purpose. In this case, the
(NPLC-a) corresponds to a linear dependence of the starting conditions ideally represent a strong solvent
logarithm of the retention factor on the logarithm of for one of the constituting polymers, causing this
the volume fraction of the strong solvent, i.e.: fraction to elute before the onset of the gradient.

Clearly, when establishing models for the gradient-log k 5 log k 2m logw (12)1 elution LC of repetitive polymers, we need to be able
where k is the retention factor atw51 (100% to deal with both early and late-eluting peaks.1

strong solvent) andm is the observed slope. In the When we know the coefficients for a given solute,
special case in whichm51, Eq. (12) corresponds to any of the models in Table 1 will allow us to rapidly
a linear dependence ofk on 1/w, which is sometimes establish whether an analyte will be eluted before it
observed in NPLC. is overtaken by the gradient. If the initial mobile-

Clearly, Eq. (12) is not valid atw50, where an phase composition isA (see Eq. (3)), the isocratic
infinitely large value ofk is predicted. This problem retention model (Table 1) will yield a value for the
is overcome by the second model (NPLC-b) listed in initial retention factor [k(A)]. The isocratic retention
Table 1. In logarithmic form, this model reads: time in the absence of a gradient is:

log k 5 2m9 log a 1 bw (13)s d t 5 t 11 k(A) (14)f gbefore m

where m9 is a slope parameter different fromm in
The onset of a gradient will reach the end of theEq. (12) anda and b are two additional model

column at a time:coefficients. As indicated in the table, this model
yields finite values both atw50 and at w51. *t 5 t 1 t 1 t 5 t 1 t (15)start m D init m D
However, it is a three-parameter equation, so that a
minimum of three data points are required to esti- wheret is an initial hold time, programmed by theinit

mate the model coefficients from experiments. analyst. In fact,t and t are equivalent, with theD init

former being an unintended (and possibly undesir-
1.4. Early-eluting and late eluting peaks able delay) and the latter an intended, desirable

* *delay.t is the total delay time (t 5t 1t ), whichD D D init

In gradient elution LC of polymers, not all peaks is the correct parameter in the equations listed in
will elute well after the onset, yet before the comple- Table 2.
tion of the gradient. Often some of the sample The criterion for a peak eluting before the onset of
components (e.g., the smallest members of a poly- the gradient is now:

Table 1
Retention models for RPLC and NPLC

Type of LC Equation for retention factor Retention factor

100% weak solvent (w50) 100% strong solvent (w51)
2SRPLC ln k 5 ln k 2 Sw k k e0 0 0

k1
]NPLC-a k 5 ` km 1w

1 1 1
]]] ] ]]NPLC-b k 5 m9m9 m9a 1 bw a a 1 bs d s d
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Table 2
Retention in gradient LC

Type of LC Corrected net retention time (t995t 2t 2t*)R R m D

During the gradient After the gradient

t* t* k(F ) k(F )1 F 2 AD D
] ] ] ] ] ]RPLC ? ln 11 SBk(A) t 2 k(F ) ? t 2 1 ln 1H F GJ F G F Gm mSB SB Bk(A) k(A) k(A)

1t* t*k(F )1 A 1 F 2 AD D]m11 m11 m11
] ] m11 ] ] ] ]]f g ]NPLC-a ? Bk (m 1 1) t 2 1 A 2 ? B t 2 2 F 2 A 1H F G J H S D J1 m mB B B Bk(A) k(A) k (m 1 1)0

1t* t*(a 1 bA) k(F )1 1 F 2 AD D]m911 m911 m911
] ] m911 ]] ] ] ]] ]NPLC-b ? bB(m91 1) t 2 1 (a 1 bA) 2 B t 2 (a 1 bF ) 2 (a 1 bA) 1f gH F G J H S D Jm mbB bB B Bk(A) k(A) b(m91 1)

t # t (16) If Eq. (21) is false, then a different integralbefore start

equation needs to be solved [4]. In the case of a
or linear gradient this equation reads:

*t A1BtD 99F R]k(A)# (17) *t1 dw 1 dwt Dm ] ]] ] ]] ]]E 1 E 5 t 2 (22)mB k w B k F k(A)s d s d
A FThe criterion for a component eluting after the

completion of the gradient is more complicated. This The resulting equations for the retention times of
will depend on the actual gradient program. In the components eluting after completion of the gradient
case of a linear gradient (Eq. (3)), we can define the are listed in Table 2.
duration of the linear (segment of the) gradient (t )G

between the initial compositionA and the final
1.5. Calculation of the bandwidth

compositionF as:

F 2 A We have used Eq. (10) for all eluting peaks, as it
]]t 5 (18)G B is universally applicable. Eq. (11) applies only to

peaks eluting well into the gradient and it is difficultwheret is in minutes ifA andF are dimensionlessG to indicate a clear distinction between analytes thatvolume fractions and the gradient slopeB is ex-
21 elute early during the gradient (and do not obey Eq.pressed in min . The end of the linear gradient

(11)) and analytes that allow this simplification. Onereaches the column at:
assumption we have made is thatG51 in all cases.

*t 5 t 1 t 1 t 1 t 5 t 1 t 1 t (19) While theoretically a reduction ins by 10 or 20%end m D init G m D G

may be expected for analytes eluting during the
Table 2 lists the equations from which the re- gradient [2], this is not always observed in practice

tention times of peaks eluting during the linear [6]. Therefore,G51 is a reasonable estimate.
segment of the gradient can be calculated. The The momentary retention factor at the point of
criteria for these equations to be applicable is that (i) elution (k ) can be readily estimated as follows.e

the peak should not elute before the onset of the For components eluting before the onset of the
gradient (Eq. (17)) and (ii): gradient (t # t ):before start

t # t (20) k 5 k(A) (23a)during end e

or For components eluting during the gradient
99t # t (21) (t # t # t ):during G start during end
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99k 5 k A1Bt (23b) ly worthwhile, critical chromatography is also as de R

highly challenging proposition. It has proven difficult
to establish and maintain critical conditions for aFor components eluting after the completion of the
given polymer, with the degree of difficulty rapidlygradient (t $ t ):during end
increasing with increasing molecular mass of the

k 5 k(F ) (23c)e polymer. It is one of the aims of the present research
to gain a better understanding of the critical chroma-

1.6. Critical conditions tography of polymers and to devise strategies to
rapidly establish the critical conditions.

It has often been observed [3,18] that the two Correlations between the different coefficients in
coefficients in Eq. (2) (lnk and S) are strongly the retention models for NPLC are not as well0

correlated. This is especially true for a well-defined documented as those in RPLC. However, it is
group of solutes with a similar chemical structure illustrated in Table 3 that a similar reasoning can be
(e.g., a homologous or polymeric series). A straight- applied to link correlations between the coefficients
line correlation can be represented as: in the NPLC models to the existence of critical

conditions.S 5 p 1 q ln k (24)0
Through the equations in Table 3, we have

where p and q are empirical coefficients. If we established a possible procedure to rapidly determine
substitute Eq. (14) into Eq. (2) we find: whether critical conditions exist for a given group of

solutes (polymeric series) on a given system (given
ln k 5 ln k 2 ( p 1 q ln k )w0 0 stationary phase and mobile phase) and to determine

5 (12 qw) ln k 2 pw (25) the value of the critical composition and the critical0

retention factor. The latter is equally as important as
It appears from Eq. (15) that at a given com- the critical composition. If all groups of analytes

position (w 51/q) all k values are equal (lnk 52 (e.g., polymers with different end groups) show thecr cr

p /q), irrespective of the value of lnk . At this same or very low retention factors, then no sepa-0

so-called critical composition, all members of a ration between the different groups can be obtained.
homologous or polymeric series co-elute. The exist-
ence of a critical composition for polymeric series is
well documented [19]. This so-called critical chro- 2. Experimental
matography is of significant practical relevance,
because it allows us – in principle – to separate a The spreadsheet workbooks were written in vari-
polymeric mixture into groups with different chemi- ous versions of the same software, i.e., Excel 5.0
cal structures. For example, all molecules with end (Windows 95), Excel 97 and Excel 2000 from
group X (irrespective of their molecular mass) may Microsoft (Seattle, WA, USA). Current versions run
be separated from all molecules with end group Y in all three versions on various personal computers
(irrespective of their molecular mass). While definite- (with Intel 486, Pentium and Pentium II processors)

Table 3
Parameter correlations

Type of LC Correlation Critical point

Composition (w ) Retention factor (k )cr cr

2p /qRPLC S 5 p 1 q ln k 1/q e0

q pNPLC-a ln k 5 p 1 qm e e1

b q
2q] ]NPLC-b ln a 1 5 1/p eS Dp m9
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without significant problems. Table 4 provides a position is held indefinitely. Incomplete elution of
summary of all the inputs required by and results the polymer is usually evident from the predicted
obtained from the software. chromatogram (see below). Recovery can easily be

calculated in the program.
2.1. Column, instrument and eluent properties The program computes the gradient slope – an

essential parameter in the calculations. Isocratic
A few simple constants have to be provided, such conditions can be accommodated, by entering a very

as the column plate count (N), the column hold-up long initial time or by choosing equal values ofA
time (t ) and the instrument dwell time (t ). A and F. There is a provision in the program not tom D

trivial change in the software would allow the user to apply the equations of Table 2 if the gradient slope
specify the column hold-up volume (V ) and the (B) is equal to zero. In that case all peaks elutem

instrument dwell volume (V ), together with the before the onset of the gradient and Eq. (14) applies.D

volumetric flow-rate (F ). As stated before, if there isv

any initial time programmed in the gradient, then this
is added (by the software) to the dwell time prior to 2.2. Sample properties
performing the calculations.

Other gradient parameters are the initial and final The way in which the retention parameters for a
compositions and the duration of the (linear segment polymeric series are entered requires a bit more
of the) gradient. It is assumed that the final com- explanation. Up to three polymeric series with a total

Table 4
Input and output of Excel spreadsheet for simulating the gradient-elution LC of polymers

Input data Output data

j Column hold-up time (t )m

j Instrument dwell time (t )D

j Column plate count (N)

Gradient parameters j Gradient slope (B)

j Initial time (t ) j Total dwell time (t*5t 1t )init D D init

j Initial composition (A)

j Final composition (F )

j Gradient duration (t )G

or

Isocratic composition

j Number of peaks in a polymeric series j For each peak

j Parameter value (e.g., lnk ) for first peak in series and incremental increase (e.g.,Dln k ) • Area0 0

or • Isocratic model parameters (e.g.,S, ln k )0

Peak molecular mass (M ) and polydispersity of polymeric standard • Indication of elution before (B), during (G) or after (A) the gradientp

• Retention time (t )R

j Location of the critical point • Elution composition (w )e

or • Retention factor at the point of elution (k )e

Coefficients of the inter-parameter correlation (see Table 3) • Width (s)

• Height (h)

j Total concentration of a group of peaks (polymeric series) • (Gaussian) profile

j Isocratic retention vs. composition curves for all solutes

j Calibration curves

w vs. MM (or degree of polymerization,n);e

t vs. MM (or n)R

j Predicted chromatogram
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of up to 100 members can be entered in the current meric units. In case the individual members are not
implementation. resolved (e.g., when modelling the behaviour of

In our original implementation, based on the polymeric standards), this is not a problem.
RPLC model, the program required the lnk value of0

the smallest (first eluting member) of the series. It 2.3. Program output
was then assumed that the Martin rule was applic-
able, i.e.: After providing data to the program as outlined

above, the analyst is provided with a complete,ln k 5 x 1 yn (26)0 interactive prediction of the chromatographic be-
where n is the degree of polymerization (i.e., the haviour of the sample. All information about the
number of monomeric units and not, as in the individual peaks is available from the spreadsheet,
conventional Martin rule, the number of carbon but the graphs provided are infinitely more useful. A
units). The combination of Eq. (24) and Eq. (26) plot of isocratic retention vs. composition illustrates
implies that the Martin rule is applicable at any the behaviour of the series. Calibration curves indi-
composition (0,w,1): cate how the retention (or the elution composition)

varies along one (or more) series.ln k 5 x w 1 y w n (27)s d s d
Chromatographers, however, assign most value to

with Eq. (26) being a special case of Eq. (27) for the predicted chromatograms. The user may provide
w50. According to Eq. (27) the Martin rule applies the length of the displayed chromatogram (opting to
at any composition, where the functionsx(w) and focus on one particular part if so desired). He or she
y(w) take on constant values. The models proposed may immediately observe the predicted effects of
by Jandera et al. [5] for RPLC and NPLC are also changes in the gradient parameters (A, t , andF ) orG

special cases of Eq. (27), withx and y being linear in the isocratic composition, changes in the prop-
(x5x 1x w ;y5y 1y w) or logarithmic functions erties of the sample, etc.0 1 0 1

(x5x 1x log w ; y5y 1y log w), respectively. One noticeable limitation is the number of data0 1 0 1

By providing the lnk value of the first peak and points that can be displayed in the current im-0

the step increment [Dln k 5y(0)], the ln k values plementation. In order to obtain a proper representa-0 0

for the specified number of members of the series tion of the predicted chromatogram, we must keep
can be calculated.S values then follow either from the value ofN rather low (up to about 5000).
known (user-supplied) values of the correlation
parametersp and q (see Eq. (24)), or, equivalently,
from (user-supplied) values of the critical point (see 3. Results and discussion
Table 3).

We often find it more convenient to establish a The models developed and implemented in this
relationship between each individual parameter study have since been applied to real data and
(either ln k and S, k and m, or a, b, and m9; see extensively validated. This is the subject of several0 1

Table 1) and the molecular mass of series members. other papers [20,21]. Here we suffice with a graphi-
In this case, we need to provide the appropriate cal illustration of the presently proposed retention
relationships, but the properties of a polymeric series model and with examples of the chromatograms and
are more easily entered in terms of the number of various other plots provided by the software.
members, the peak molecular mass and the polydis- Most experience has been obtained with chromato-
persity. We do not make any assumptions about the graphic systems in which the retention of polymers is
existence of a critical composition, either real (0, most closely described by the RPLC-type model. If
w ,1) or imaginary (w ,0 or w .1). A dis- Eqs. (2), (24), and (26) are all valid, a retention vs.cr cr cr

advantage of this second approach is that the in- composition plot for a homopolymeric series (one
dividual peaks do not necessarily represent members kind of monomer, same end groups for all members)
of the series. In general, the distance between the can be depicted by a series of lines as shown in Fig.
imaginary peaks is a non-integer number of mono- 1. Each line in this figure represents the variation in
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Fig. 1. Retention vs. composition plot of a homopolymeric series. Parameter estimates based on experiments reported elsewhere [21].
Critical mobile-phase composition: 43% THF (strong solvent) inn-hexane (weak solvent); critical retention factor: 0.008.

retention with composition for a specific member of given system. Although we have so far only im-
the series (specific number of monomeric units). The plemented single-step gradients (defined by the
validity of Eq. (2) implies that these lines are initial composition, initial-hold period, final com-
straight. The validity of Eq. (24) corresponds to the position, and duration of the gradient segment,
occurrence of a common intersection point for all assuming an indefinite hold at the final composition
lines. This is equivalent to the occurrence of critical in the calculations), extension of the current treat-
elution conditions, at which retention within a poly- ment to include multi-step linear gradients is trivial.
meric series is independent of molecular mass [19]. Fig. 2 shows two gradient-elution chromatograms,
The critical composition at which the lines intersect predicted using the retention model of Fig. 1. The
may represent a real mobile-phase mixture (0,w, two chromatograms are indicative of commonly
1) or a ‘‘virtual’’ mixture when w is outside this observed chromatograms. In the first case (Fig. 2a),
range. The validity of Eq. (26) implies that along good separation is attained for a number of members
any vertical line in Fig. 1 the lines are equidistant. of a polymeric series. Retention is strongly affected
Note that Eq. (26) does not need to be obeyed in by the molecular mass (or degree of polymerization).
order for critical conditions to occur. In the second chromatogram (Fig. 2b), all members

Once the retention behaviour of a polymeric series of this series elute in a compact group, which
has been established experimentally [20,21], the (depending on the chromatographic efficiency or
theory outlined in this paper allows the prediction of plate count) may appear as a single, broad, fronting
the chromatograms obtained for that series under any peak. In this case retention is rather independent of
kind of isocratic conditions or linear gradients for a molecular mass and the term pseudo-critical chroma-
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Fig. 2. (a) Gradient-elution chromatogram predicted for the homopolymeric series of Fig. 1. Polymer molecular mass: 20 000 Da;
polydispersity 1.1; gradient: 10 to 60% THF inn-hexane in 90 min;t 5108 s;t 5556 s;N52000. (b) Gradient: 10 to 60% THF in 15m D

min; all other conditions as in (a).
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tography has been used for such gradient separations tions of polymers. A calibration curve can be con-
[16]. structed to relate retention to molecular mass and to

Genuine critical chromatography occurs under convert a chromatogram to a molecular-mass dis-
isocratic conditions, as is illustrated by the cali- tribution (MMD), as is commonly done in size-
bration curves in Fig. 3. As is common in size- exclusion chromatography (SEC). An interesting and
exclusion chromatography, we refer to a relationship potentially beneficial aspect is that the calibration
between retention and molecular mass as a cali- curve can be changed almost at will by varying the
bration curve. At the critical point (bottom curve) conditions of the gradient. Fig. 4 shows examples of
retention is clearly independent of molecular mass. calibration curves corresponding to the chromato-
However, as soon as the mobile-phase is only grams of Fig. 2. Alternatively, we may plot the
slightly weaker than the critical mixture, retention is elution composition as a function of the molecular
seen to be a strong function of the molecular mass. mass. In this case, the calibration curves are less
Although less dramatically, a mobile phase stronger affected by the gradient conditions.
than the critical mixture also results in retention Isocratic chromatography of a single homopoly-
varying with composition. It is clear that critical meric series is not very relevant. Isocratic LC
chromatography can only be achieved at a very alleviates some of the detection problems induced by
specific composition. This is in agreement with the gradient-elution LC. For example, refractive-index
common observation that critical conditions are very detection may be used only under isocratic con-
hard to achieve and maintain in practice [22]. ditions. However, isocratic chromatography of poly-
Gradient-elution LC allows high-resolution separa- mers can be achieved much more easily in the

Fig. 3. Retention time vs. molecular mass calibration curve predicted for the homopolymeric series of Fig. 1 at near-critical conditions;
isocratic mobile phase, all other conditions as in Fig. 2a.
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Fig. 4. Calibration curves corresponding to the chromatograms of Fig. 2.
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size-exclusion mode. The real interest of (pseudo-) We are presently investigating the use of this kind
critical chromatography becomes obvious when dif- of retention modelling to other, more-demanding
ferent polymeric series (different monomeric units challenges in polymer separations. At the very least,
and/or different end groups) are considered. We will the model is an excellent tool to help us understand
just present a single example here. Fig. 5 illustrates the behaviour of repetitive polymers in liquid chro-
the retention models of two different homopolymers, matography.
such as encountered in a polymeric blend. Two
different series, based on different monomeric seg-
ments, usually show quite different critical com- 4. Conclusions
positions, allowing many blends to be readily sepa-
rated into the individual homopolymers [16]. A (1) Gradient-elution theory can be expanded and
simulated example (‘‘pseudo-critical’’ conditions) is applied to describe the chromatographic behaviour of
shown in Fig. 6. Once the individual polymers have polydisperse macromolecular samples.
been characterized in terms of model coefficients, it (2) The expanded theory can readily be im-
becomes easy to simulate and optimize the sepa- plemented in standard spreadsheet software.
ration of polymeric blends. (3) Critical chromatography can be incorporated

Fig. 5. Retention vs. composition plot of a two-component polymeric blend. Both components: molecular mass 20 000 Da; polydispersity
1.2. Component 1: critical mobile-phase composition: 29% strong solvent; critical retention factor: 0.045. Component 2: critical
mobile-phase composition: 57% strong solvent; critical retention factor: 0.0024. All other conditions as in Fig. 2a.
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Fig. 6. Gradient-elution chromatogram illustrating the separation of the two-component polymeric blend of Fig. 5; gradient: 0 to 60% in 5
min. All other conditions as in Fig. 2a.
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